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Abstract. A simple, yet accurate, method of solving the Schrödinger equation across an arbitrary
potential barrier is described, based on the analytic transfer-matrix technique. This paper gives the
final analytical expression for the transmission probability. Numerical calculations for four typical
potential barrier structures are compared with the traditional WKB, modified WKB and the modified
Airy function (MAF) methods. Excellent agreement with an exact example is demonstrated. Most
importantly, in cases where other potential-barrier methods fail, our method performs well.

Tunnelling in quantum-well and superlattice structures has recently attracted more interest, due
to the development of high-speed and novel devices. A variety of approximate and numerical
techniques for solving the Schrödinger equation have been developed [1–7]. However, a
limited number of potentials can be solved analytically. Among the approximate approaches,
the Wentzel–Kramos–Brillouin (WKB) method has been widely used due to its simple
mathematical form and clear physical interpretation. Although it is restricted to slowly varying
potential profiles that are continuous, many refinements have been developed to improve its
accuracy, such as the modified conventional WKB method (MWKB) [4]. However, these also
fail to provide perfect results. Using numerical methods, such as those based on the multistep
potential approximation, one can obtain accurate solutions, but one tends to lose a great deal
of physical insight in the process [2].

In this paper, we provide a general analysis of tunnelling across an arbitrary potential
barrier and give a final analytical result with explicit physical meaning. We discuss the results
obtained using our method for four typical profiles. The calculated tunnelling coefficients are
compared with those obtained using WKB, MWKB, modified Airy functions (MAF) [5] and
numerical methods. It is shown that our results agree well with exact numerical calculations.
Numerical comparisons for several typers of potential barrier show our method to succeed well
where other potential-barrier methods, such as WKB, MWKB, MAF and even the improved
MAF method [1], fail.

In the present calculation, rather than dealing with continuous variations of potential
energy, we first divide the potential barrier into segments, in which the potential energy can be
regarded as a constant V (xi). In the limit, as the divisions become finer and finer, a continuous
variation will be recovered. An arbitrary potential barrier is shown in figure 1, where x = 0, xs
are the truncation points and xc, xt are turning points. E is the incident energy. We divide the
regions (0, xc), (xc, xt ) and (xt , xs) into l, m and n layers with equal width h, respectively.
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Figure 1. An arbitrary potential barrier.

As is well known, the field has an oscillatory character in the field x < xc and x > xt , so
the corresponding transfer matrix can be written as [8]

Mi =


 cos (kih) − 1

ki
sin (kih)

ki sin (kih) cos (kih)


 (i = 1, 2, . . . , l) (1)

Mj =


 cos

(
kjh

) − 1

kj
sin
(
kjh

)
kj sin

(
kjh

)
cos

(
kjh

)

 (j = l + m + 1, l + m + 2, . . . , l + m + n) (2)

where ki = √
2m(E − V (xi))/h̄ and kj = √

2m(E − V (xj ))/h̄.
In the region xc < x < xt , due to its evanescent character, the transfer matrix is changed

to

Mq =


 cosh(αqh) − 1

αq
sinh(αqh)

−αq sinh(αqh) cosh(αqh)


 (q = l + 1, l + 2, . . . , l + m) (3)

where αq = √
2m(V (xq)− E)/h̄. Imposing the boundary condition at x = 0 and xs , we

obtain the matrix equation[
ϕ(0)

ϕ′(0)

]
=
(

l∏
i=1

Mi

)(
l+m∏
q=l+1

Mq

)(
l+m+n∏

j=l+m+1

Mj

)[
ϕ (xs)

ϕ′ (xs)

]
(4)

where ϕ is the wavefunction and the prime in ϕ′ denotes differentiation with respect to x. We
assume that the field in x < 0 and x > xs is as follows:

ϕ(x) =
{
A0eik0x + B0e−ik0x x < 0

Cse
iksx x > xs

(5)

where k0 = √
2m(E − V (0))/h̄ and ks = √

2m(E − V (xs))/h̄.
By using equation (5), equation (4) can be changed into

(
−ik0

A0 − B0

A0 + B0
, 1

)( l∏
i=1

Mi

)(
l+m∏
q=l+1

Mq

)(
l+m+n∏

j=l+m+1

Mj

)(
1

iks

)
= 0. (6)
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After some simple algebraic manipulations we obtain(
−ik0

A0 − B0

A0 + B0
, 1

) l∏
i=1

Mi

l+m∏
q=l+1

Mq

( 1

iKt

)
= 0 (7)

where Kt = Kl+m+1 and

iKj = −kj tan

(
tan−1

(
Kj+1

ikj

)
− kjh

)
(j = l + m + 1, . . . l + m + n) (8)

where Kl+m+n+1 = Ks .
This means that the field solution beyond the turning point can be expressed, corresponding

to (5), as

ϕ(x) = Cte
iKt (x−xt ) (x > xt ). (9)

With the same algebraic manipulation we can deduce the following equation from (7):(
−ik0

A0 − B0

A0 + B0
, 1

)( 1

iK1

)
= 0 (10)

where

iKp = −kp tan

(
tan−1

(
Kp+1

ikp

)
− kph

)

kp = √
2m(E − V (xp))/h̄ (p = 1, 2, . . . , l, l + 1, l + 2, . . . , l + m).

(11)

In this calculation process we have used the identical equation identity

cos(iγ h) = cosh(γ h) sin(iγ h) = i sinh(γ h). (12)

Here we set

φp = tan−1

(
Kp

ikp

)
. (13)

Using equation (11) we can obtain

φp = mpπ + tan−1

(
Kp+1

ikp

)
− kph

= mpπ + tan−1

(
kp+1

kp
tan φp+1

)
− kph (p = 1, 2, . . . , l + m,mp = 0, 1, . . .). (14)

In order to obtain an appropriate form which can give a clear physical insight, we proceed
by writing equation (14) as follows:

kph +

[
φp+1 − tan−1

(
kp+1

kp
tan φp+1

)]
= mpπ + φp+1 − φp. (15)

For p = l + m we have

kl+mh = ml+mπ + tan−1

(
Kt

ikl+m

)
− tan−1

(
Kl+m

ikl+m

)
. (16)

Summing over the index p, we have
l+m∑
p=1

kph +
l+m−1∑
p=1

[
φp+1 − tan−1

(
kp+1

kp
tan φp+1

)]
= mpπ + tan−1

(
Kt

ikl+m

)
− tan−1

(
K1

ik1

)
.

(17)
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In order to simplify the above equation, letting (l + m) → ∞ and h → 0 then kl+m → 0
and

tan−1

(
Kt

ikl+m

)
→ 1

2π

so we may write equation (17) as∫ xt

0
k(x) dx + ξ = mpπ + 1

2π − tan−1

(
K1

ik1

)
(18)

where

ξ =
l+m−1∑
p=1

(
φp+1 − tan−1

(
kp+1

kp
tan φp+1

))
.

From (18) we obtain the following new conclusions.

(a) It is clear that subscript p and p + 1 indicate the neighbouring section layer in the profile.
If we let kp+1 = kp, we have neglected the potential energy difference of the neighbouring
section layers, and thus we obtain ξ = 0, so ξ can be interpreted as the phase contribution
of the sub-waves reflected from every interface between the two neighbouring segments
[8]. In most approximate methods ξ is neglected.

(b) We integrate the k(x) from the first truncating point x0 to the second turning point xt ,
whereas the WKB method uses the two turning points.

(c) Note that the half-phase contribution at the turning points is π/2. This is totally different
from the WKB method in which it is exactly equal to π/4.

From equation (10), we can obtain the reflection coefficient r ,

r = B0

A0
= k0 −K1

k0 + K1
. (19)

Since tan φ1 = K1
ik1

, we therefore have

k1 −K1

k1 + K1
= exp(−2iφ1) = exp

(
−2i tan−1

(
K1

ik1

))
. (20)

With the condition h → 0 we introduce the only approximation used in the calculation
process: since x1 is just close to the truncation points x0, and V (x0) is almost equal to V (x1),
then k0 ≈ k1.

According to (19) and (20), we obtain

r = exp

[
2i

(∫ xt

0
k(x) dx + ξ − 1

2π + mpπ

)]
. (21)

The tunnelling coefficient D is then expressed by

D = 1 − |r|2 (22)

where

ξ =
l+m−1∑
p=1

(
φp+1 − tan−1

(
kp+1

kp
tan φp+1

))

φp = tan−1

(
Kp

ikp

)

iKp = −kp tan

(
tan−1

(
Kp+1

ikp

)
− kph

)

kp = √
2m(E − V (xp))/h̄ (p = 1, 2, . . . , l, l + 1, l + 2, . . . , l + m).
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In order to illustrate the accuracy of our method, we present here some typical results for
the tunnelling coefficient obtained by the present theory, the WKB, MWKB, MAF and the
exact numerical results. In our calculations we divide the whole potential into 500 and 5000
layers equally.

We have chosen a truncated linear step, a truncated exponential step, a truncated parabolic
potential and a truncated quartic potential as our four examples [1].

Example 1: Truncated linear step potential:

V (X) =




0 X < 0

V0(B −X) 0 < X < B

0 X > B.

In the following four profiles, X = 0, B are the truncation points and X = q,−q are the
turning points.

X = x/a and B = b/a are both normalized, the Schrödinger equation can be written as

d2ψ

dx2
+ α2

[
ε − V (X)

V0

]
ψ = 0

where

k2(x) = α2(ε − V (X)/V0) α = (2ma2V0)
1/2/h̄ ε = E/V0.

In this paper we assumeα = 1 without any loss of generality. So in the linear step potential
k(X) = ε − V (X)/V0 = ε − B + X.

Table 1. Comparison of the variation of the tunnelling coefficient D with B. B − ε = 0.5 for the
truncated linear step potential (example 1).

Present Present
B Numerical (500) (5000) WKB MWKB MAF

3 0.6077 0.6059 0.6075 0.4670 0.6962 0.6078
6 0.4818 0.4784 0.4815 0.4670 0.5163 0.4856
8 0.4370 0.4325 0.4374 0.4670 0.4522 0.4377

15 0.3423 0.3353 0.3416 0.4670 0.3353 0.3431
20 0.3052 0.3139 0.3048 0.4670 0.2917 0.3050
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Example 2: Truncated exponential step potential:

V (X) =
{

0 X < 0

V0 exp(−X) X > 0

where k(X) = ε − exp(−X).

Table 2. Comparison of the tunnelling coefficient D for different values of ε for the truncated
exponential step potential (example 2).

Present Present
ε Numerical (500) (5000) WKB MWKB MAF

0.25 0.4789 0.4772 0.4788 0.2247 0.3892 0.4865
0.50 0.7549 0.7527 0.7549 0.4221 0.8443 0.7601
0.75 0.8702 0.8672 0.8695 0.5693 0.9861 0.8733

Example 3: Truncated parabolic potential:

V (X) =




= 0 X < −B
= V0(B

2 −X2) −B < X < B

= 0 X > B

where k(X) = ε − B2 + X2.

Table 3. Comparison of the tunnelling coefficient D for B = 1 for different values of ε for the
truncated parabolic potential (example 3).

Present Present
ε Numerical (500) (5000) WKB MAF MMAF

0.50 0.4604 0.4600 0.4603 0.1878 0.1003 0.3981
0.20 0.2141 0.2133 0.2141 0.0778 0.0506 0.1859
0.10 0.1124 0.1109 0.1122 0.0575 0.0390 0.0971
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Example 4: Truncated quartic potential:

V (X) =




0 X < −B
V0(B

4 −X4) −B < X < B

0 X > B

where k(X) = ε − B4 + X4.

Table 4. Comparison of the tunnelling coefficient D for B = 10 of the truncated quartic potential
(example 4).

Present Present
B4 − ε Numerical (500) (5000) MWKB MAF

0.50 0.0741 0.060 41 0.0743 0.1176 0.0709
1.00 0.0220 0.017 8 0.0219 0.0299 0.0217

The above results clearly show that the present method produces much more accurate
results than the other approximations.

From table 1, the MAF method is shown to have a similar accuracy to the numerical
method. As we know, the MAF function is accurate for a linear potential but for the other
potential barriers the MAF method is not as accurate as ours.

The method we have developed not only gives an analytical expression (21) for the
tunnelling through an arbitrary one-dimensional potential barrier, but also much more accurate
numerical results. Unlike the WKB solution, our method can hold throughout the region of
interest, including at the turning points.
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